319 research outputs found

    Cooling of Dark-Matter Admixed Neutron Stars with density-dependent Equation of State

    Full text link
    We propose a dark-matter (DM) admixed density-dependent equation of state where the fermionic DM interacts with the nucleons via Higgs portal. Presence of DM can hardly influence the particle distribution inside neutron star (NS) but can significantly affect the structure as well as equation of state (EOS) of NS. Introduction of DM inside NS softens the equation of state. We explored the effect of variation of DM mass and DM Fermi momentum on the NS EOS. Moreover, DM-Higgs coupling is constrained using dark matter direct detection experiments. Then, we studied cooling of normal NSs using APR and DD2 EOSs and DM admixed NSs using dark-matter modified DD2 with varying DM mass and Fermi momentum. We have done our analysis by considering different NS masses. Also DM mass and DM Fermi momentum are varied for fixed NS mass and DM-Higgs coupling. We calculated the variations of luminosity and temperature of NS with time for all EOSs considered in our work and then compared our calculations with the observed astronomical cooling data of pulsars namely Cas A, RX J0822-43, 1E 1207-52, RX J0002+62, XMMU J17328, PSR B1706-44, Vela, PSR B2334+61, PSR B0656+14, Geminga, PSR B1055-52 and RX J0720.4-3125. It is found that APR EOS agrees well with the pulsar data for lighter and medium mass NSs but cooling is very fast for heavier NS. For DM admixed DD2 EOS, it is found that for all considered NS masses, all chosen DM masses and Fermi momenta agree well with the observational data of PSR B0656+14, Geminga, Vela, PSR B1706-44 and PSR B2334+61. Cooling becomes faster as compared to normal NSs in case of increasing DM mass and Fermi momenta. It is infered from the calculations that if low mass super cold NSs are observed in future that may support the fact that heavier WIMP can be present inside neutron stars.Comment: 24 Pages, 15 Figures and 2 Tables. Version accepted in The European Physical Journal

    Improved limits on dark matter annihilation in the Sun with the 79-string IceCube detector and implications for supersymmetry

    Get PDF
    We present an improved event-level likelihood formalism for including neutrino telescope data in global fits to new physics. We derive limits on spin-dependent dark matter-proton scattering by employing the new formalism in a re-analysis of data from the 79-string IceCube search for dark matter annihilation in the Sun, including explicit energy information for each event. The new analysis excludes a number of models in the weak-scale minimal supersymmetric standard model (MSSM) for the first time. This work is accompanied by the public release of the 79-string IceCube data, as well as an associated computer code for applying the new likelihood to arbitrary dark matter models.Comment: 24 pages, 8 figs, 1 table. Contact authors: Pat Scott & Matthias Danninger. Likelihood tool available at http://nulike.hepforge.org. v2: small updates to address JCAP referee repor

    An All-Sky Search for Three Flavors of Neutrinos from Gamma-Ray Bursts with the IceCube Neutrino Observatory

    Get PDF
    We present the results and methodology of a search for neutrinos produced in the decay of charged pions created in interactions between protons and gamma-rays during the prompt emission of 807 gamma-ray bursts (GRBs) over the entire sky. This three-year search is the first in IceCube for shower-like Cherenkov light patterns from electron, muon, and tau neutrinos correlated with GRBs. We detect five low-significance events correlated with five GRBs. These events are consistent with the background expectation from atmospheric muons and neutrinos. The results of this search in combination with those of IceCube's four years of searches for track-like Cherenkov light patterns from muon neutrinos correlated with Northern-Hemisphere GRBs produce limits that tightly constrain current models of neutrino and ultra high energy cosmic ray production in GRB fireballs.Comment: 33 pages, 14 figures; minor changes made to match published version in the Astrophysical Journal, 2016 June 2

    The IceCube Neutrino Observatory - Contributions to ICRC 2015 Part II: Atmospheric and Astrophysical Diffuse Neutrino Searches of All Flavors

    Full text link
    Papers on atmospheric and astrophysical diffuse neutrino searches of all flavors submitted to the 34th International Cosmic Ray Conference (ICRC 2015, The Hague) by the IceCube Collaboration.Comment: 66 pages, 36 figures, Papers submitted to the 34th International Cosmic Ray Conference, The Hague 2015, v2 has a corrected author lis

    All-sky search for time-integrated neutrino emission from astrophysical sources with 7 years of IceCube data

    Get PDF
    Since the recent detection of an astrophysical flux of high energy neutrinos, the question of its origin has not yet fully been answered. Much of what is known about this flux comes from a small event sample of high neutrino purity, good energy resolution, but large angular uncertainties. In searches for point-like sources, on the other hand, the best performance is given by using large statistics and good angular reconstructions. Track-like muon events produced in neutrino interactions satisfy these requirements. We present here the results of searches for point-like sources with neutrinos using data acquired by the IceCube detector over seven years from 2008--2015. The discovery potential of the analysis in the northern sky is now significantly below Eν2dϕ/dEν=1012TeVcm2s1E_\nu^2d\phi/dE_\nu=10^{-12}\:\mathrm{TeV\,cm^{-2}\,s^{-1}}, on average 38%38\% lower than the sensitivity of the previously published analysis of four years exposure. No significant clustering of neutrinos above background expectation was observed, and implications for prominent neutrino source candidates are discussed.Comment: 19 pages, 17 figures, 3 tables; ; submitted to The Astrophysical Journa

    Lowering IceCube’s energy threshold for point source searches in the southern sky

    Get PDF
    Observation of a point source of astrophysical neutrinos would be a "smoking gun" signature of a cosmic-ray accelerator. While IceCube has recently discovered a diffuse flux of astrophysical neutrinos, no localized point source has been observed. Previous IceCube searches for point sources in the southern sky were restricted by either an energy threshold above a few hundred TeV or poor neutrino angular resolution. Here we present a search for southern sky point sources with greatly improved sensitivities to neutrinos with energies below 100 TeV. By selecting charged-current nu(mu) interacting inside the detector, we reduce the atmospheric background while retaining efficiency for astrophysical neutrino-induced events reconstructed with sub-degree angular resolution. The new event sample covers three years of detector data and leads to a factor of 10 improvement in sensitivity to point sources emitting below 100 TeV in the southern sky. No statistically significant evidence of point sources was found, and upper limits are set on neutrino emission from individual sources. A posteriori analysis of the highest-energy (similar to 100 TeV) starting event in the sample found that this event alone represents a 2.8 sigma deviation from the hypothesis that the data consists only of atmospheric background

    The contribution of Fermi-2LAC blazars to the diffuse TeV-PeV neutrino flux

    Get PDF
    The recent discovery of a diffuse cosmic neutrino flux extending up to PeV energies raises the question of which astrophysical sources generate this signal. One class of extragalactic sources which may produce such high-energy neutrinos are blazars. We present a likelihood analysis searching for cumulative neutrino emission from blazars in the 2nd Fermi-LAT AGN catalogue (2LAC) using an IceCube neutrino dataset 2009-12 which was optimised for the detection of individual sources. In contrast to previous searches with IceCube, the populations investigated contain up to hundreds of sources, the largest one being the entire blazar sample in the 2LAC catalogue. No significant excess is observed and upper limits for the cumulative flux from these populations are obtained. These constrain the maximum contribution of the 2LAC blazars to the observed astrophysical neutrino flux to be 27%27 \% or less between around 10 TeV and 2 PeV, assuming equipartition of flavours at Earth and a single power-law spectrum with a spectral index of 2.5-2.5. We can still exclude that the 2LAC blazars (and sub-populations) emit more than 50%50 \% of the observed neutrinos up to a spectral index as hard as 2.2-2.2 in the same energy range. Our result takes into account that the neutrino source count distribution is unknown, and it does not assume strict proportionality of the neutrino flux to the measured 2LAC γ\gamma-ray signal for each source. Additionally, we constrain recent models for neutrino emission by blazars.Comment: 18 pages, 22 figure
    corecore